skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Berciu, Cristina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. A<sc>bstract</sc> A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a τ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb−1. Events with τ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonantt-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-τ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5–2.3 TeV, and up to 3 TeV fort-channel LQ exchange. Leptoquarks are excluded below masses of 1.22–1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant ττ production throught-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained. 
    more » « less
  3. A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20 fb 1 of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m t = 172.52 ± 0.14 ( stat ) ± 0.30 ( syst ) GeV , with a total uncertainty of 0.33 GeV. © 2024 CERN, for the CMS and ATLASs Collaboration2024CERN 
    more » « less
  4. Abstract Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψmesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψmesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be$$27{2}_{-104}^{+141}\,{{{\rm{(stat)}}}}\,\pm 17\,{{{\rm{(syst)}}}}\,{{{\rm{fb}}}}\,$$ 27 2 104 + 141 (stat) ± 17 (syst) fb , and compared it to theoretical expectations for triple-J/ψmeson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process. 
    more » « less
  5. Abstract Measurements of the associated production of a W boson and a charm ($${\text {c}}$$ c ) quark in proton–proton collisions at a centre-of-mass energy of 8$$\,\text {TeV}$$ TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {fb}^{-1}$$ fb - 1 collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$ σ ( pp W + c + X ) B ( W ν ) , where$$\ell = \text {e}$$ = e or$$\upmu $$ μ , and the cross section ratio$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$ σ ( pp W + + c ¯ + X ) / σ ( pp W - + c + X ) are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed. 
    more » « less